Nonlinear programming test cases
This is a small collection of testcases from the book
W. Hock, K. Schittkowski
Test Examples for Nonlinear Programming Codes.
Lecture Notes in Econ and Math. Syst. 187
In the following list there are given the data:
The functions defining the problem (objective function and constraints)
standard initial value for
x
. This latter can be changed on the input page. For some of the testcases I have changed the initial value compared to the original source in order to obtain a feasible initial
x
.
The optimal solution. The precision cannot be guaranteed for all given cases with the number of digits given.
The quotient of the largest to the smallest nonzero multiplier
u
max
*
/
u
min
*
. The problem becomes harder if this quotient is large.
λ
max
*
/
λ
min
*
, the condition number of the projected Hessian, this is the condition number of the objective function seen in the tangent manifold of the feasible set at the solution. In contrast to this one the matrix
∇
x
2
L
is not necessarily positive (semi)definite. With this quotient growing the problem becomes harder. If this value is omitted (it appears a "-") then the solution is at a vertex, which in turn makes the problem much easier. Locally it reduces to a system of
n
nonlinear equations in
n
unknowns for finding this vertex.
Problem 23
Number of variables: n=2
Objective function:
f
(
x
)
=
x
1
2
+
x
2
2
Constraints:
x
1
+
x
2
-
1
≥
0
x
1
2
+
x
2
2
-
1
≥
0
9
x
1
2
+
x
2
2
-
9
≥
0
x
1
2
-
x
2
≥
0
x
2
2
-
x
1
≥
0
-
50
≤
x
i
≤
50
,
i
=
1
,
2
initial guess:
x
0
=
(
3
,
1
)
f
(
x
0
)
=
10
Solution:
x
*
=
(
1
,
1
)
f
(
x
*
)
=
2
u
max
*
/
u
min
*
=
2
/
2
=
1
λ
max
*
/
λ
min
*
=
-
u
*
=
(
0
,
0
,
0
,
2
,
2
,
0
,
0
,
0
,
0
)
Problem 33
Number of variables: n=3
Objective function:
f
(
x
)
=
(
x
1
-
1
)
(
x
1
-
2
)
(
x
1
-
3
)
+
x
3
Constraints:
x
3
2
-
x
2
2
-
x
1
2
≥
0
x
1
2
+
x
2
2
+
x
3
2
-
4
≥
0
0
≤
x
1
0
≤
x
2
0
≤
x
3
≤
5
initial guess:
x
0
=
(
0
,
0
,
3
)
f
(
x
0
)
=
-
3
Solution:
x
*
=
(
0
,
2
,
2
)
f
(
x
*
)
=
2
-
6
u
max
*
/
u
min
*
=
11
/
.
17678
=
62
.
23
λ
max
*
/
λ
min
*
=
-
u
*
=
(
0
.
177
,
0
.
177
,
11
,
0
,
0
,
0
)
Problem 43 (Rosen-Suzuki)
Number of variables: n=4
Objective function:
f
(
x
)
=
x
1
2
+
x
2
2
+
2
x
3
2
+
x
4
2
-
5
x
1
-
5
x
2
-
21
x
3
+
7
x
4
Constraints:
8
-
x
1
2
-
x
2
2
-
x
3
2
-
x
4
2
-
x
1
+
x
2
-
x
3
+
x
4
≥
0
10
-
x
1
2
-
2
x
2
2
-
x
3
2
-
2
x
4
2
+
x
1
+
x
4
≥
0
5
-
2
x
1
2
-
x
2
2
-
x
3
2
-
2
x
1
+
x
2
+
x
4
≥
0
initial guess:
x
0
=
(
0
,
0
,
0
,
0
)
f
(
x
0
)
=
0
Solution:
x
*
=
(
0
,
1
,
2
,
-
1
)
f
(
x
*
)
=
-
44
u
max
*
/
u
min
*
=
2
/
1
=
2
λ
max
*
/
λ
min
*
=
9
/
8
.
07
=
1
.
12
u
*
=
(
1
,
0
,
2
)
Problem 54
Number of variables: n=6
Objective function:
f
(
x
)
=
-
exp
(
-
h
(
x
)
/
2
)
h
(
x
)
=
(
(
x
1
-
1
.
E
4
)
2
/
6
.
4
E
7
+
(
x
1
-
1
.
E
4
)
(
x
2
-
1
)
/
2
.
E
4
+
6
.
25
(
x
2
-
1
)
2
)
/
.
96
+
(
x
3
-
2
.
E
6
)
2
/
4
.
9
E
13
+
(
x
4
-
10
)
2
/
2
.
5
E
3
+
(
x
5
-
1
.
E
-
3
)
2
/
2
.
5
E
-
3
+
(
x
6
-
1
.
E
8
)
2
/
2
.
5
E
17
Constraints:
x
1
+
4
.
E
3
x
2
-
1
.
76
E
4
=
0
0
≤
x
1
≤
2
.
E
4
-
10
≤
x
2
≤
10
0
≤
x
3
≤
1
.
E
7
0
≤
x
4
≤
20
-
1
≤
x
5
≤
1
0
≤
x
6
≤
2
.
E
8
initial guess:
x
0
=
(
6
E
3
,
1
.
5
,
4
E
6
,
2
,
3
E
-
3
,
5
E
7
)
f
(
x
0
)
=
-
.
7651
Solution:
x
*
=
(
91600
/
7
,
79
/
70
,
2
E
6
,
10
,
1
E
-
3
,
1
E
8
)
f
(
x
*
)
=
-
exp
(
-
27
/
280
)
u
max
*
/
u
min
*
=
.
4865
E
-
4
/
.
4865
E
-
4
=
1
λ
max
*
/
λ
min
*
=
362
.
9
/
.
36
E
-
17
=
.
10
E
21
u
*
=
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
.
486
E
-
4
)
hs54scal is obtained from hs54 by the linear transformation
x
1
'
=
(
x
1
-
1000
)
/
8000
x
2
'
=
(
x
2
-
1
)
2
.
5
x
3
'
=
(
x
3
-
2000000
)
/
7000000
x
4
'
=
(
x
4
-
10
)
/
50
x
5
'
=
(
x
5
-
0
.
001
)
/
0
.
05
x
6
'
=
(
x
6
-
100000000
)
/
500000000
This problem is quite easy to solve. This shows the importance of proper problem scaling in practice.
Problem 73 (cattle-feed)
Number of variables: n=4
Objective function:
f
(
x
)
=
24
.
55
x
1
+
26
.
75
x
2
+
39
x
3
+
40
.
50
x
4
Constraints:
2
.
3
x
1
+
5
.
6
x
2
+
11
.
1
x
3
+
1
.
3
x
4
-
5
≥
0
12
x
1
+
11
.
9
x
2
+
41
.
8
x
3
+
52
.
1
x
4
-
21
-
1
.
645
(
.
28
x
1
2
+
.
19
x
2
2
+
20
.
5
x
3
2
+
.
62
x
4
2
)
1
/
2
≥
0
x
1
+
x
2
+
x
3
+
x
4
-
1
=
0
0
≤
x
i
,
i
=
1
,
…
,
4
initial guess:
x
0
=
(
1
,
1
,
1
,
1
)
f
(
x
0
)
=
130
.
8
Solution:
x
*
=
(
.
6355216
,
-
.
12
E
-
11
,
.
3127019
,
.
05177655
)
f
(
x
*
)
=
29
.
894378
u
max
*
/
u
min
*
=
18
.
37
/
.
2433
=
75
.
5
λ
max
*
/
λ
min
*
=
-
u
*
=
(
.
58
E
0
,
.
411
E
0
,
0
,
.
243
E
0
,
0
,
0
,
.
184
E
2
)
Problem 84
Number of variables: n=5
Objective function:
f
(
x
)
=
-
a
1
-
a
2
x
1
-
a
3
x
1
x
2
-
a
4
x
1
x
3
-
a
5
x
1
x
4
-
a
6
x
1
x
5
Constraints:
294000
≥
a
7
x
1
+
a
8
x
1
x
2
+
a
9
x
1
x
3
+
a
10
x
1
x
4
+
a
11
x
1
x
5
≥
0
294000
≥
a
12
x
1
+
a
13
x
1
x
2
+
a
14
x
1
x
3
+
a
15
x
1
x
4
+
a
16
x
1
x
5
≥
0
277200
≥
a
17
x
1
+
a
18
x
1
x
2
+
a
19
x
1
x
3
+
a
20
x
1
x
4
+
a
21
x
1
x
5
≥
0
0
≤
x
1
≤
1000
1
.
2
≤
x
2
≤
2
.
4
20
≤
x
3
≤
60
9
≤
x
4
≤
9
.
3
6
.
5
≤
x
5
≤
7
The coefficients
a
i
may be drawn from the following table:
i
a
i
i
a
i
1
-
24345
11
15711
.
36
2
-
8720288
.
849
12
-
155011
.
1084
3
150512
.
5253
13
4360
.
53352
4
-
156
.
6950325
14
12
.
9492344
5
476470
.
3222
15
10236
.
884
6
729482
.
8271
16
13176
.
786
7
-
145421
.
402
17
-
326669
.
5104
8
2931
.
1506
18
7390
.
68412
9
-
40
.
427932
19
-
27
.
8986976
10
5106
.
192
20
16643
.
076
21
30988
.
146
initial guess:
x
0
=
(
2
.
52
,
2
,
37
.
5
,
9
.
25
,
6
.
8
)
f
(
x
0
)
=
-
2351243
.
5
Solution:
x
*
=
(
4
.
53743097
,
2
.
4
,
60
,
9
.
3
,
7
)
f
(
x
*
)
=
-
5280335
.
133
u
max
*
/
u
min
*
=
.
7168
E
6
/
.
1914
E
2
=
.
37
E
5
λ
max
*
/
λ
min
*
=
-
u
*
=
(
0
,
0
,
0
,
0
,
0
,
.
191
E
2
,
0
,
0
,
0
,
0
,
0
,
0
,
.
412
E
5
,
.
171
E
4
,
.
717
E
6
,
.
619
E
6
)
hs84scal is obtained from this by the transformation
x
1
'
=
x
1
/
1000
,
x
2
'
=
x
2
,
x
3
'
=
x
3
/
10
,
x
4
'
=
x
4
,
x
5
'
=
x
5
and division of the first three inequalities by 1000. This means primal and dual scaling. Now the problem is much easier.
Problem 86 (Colville No. 1)
Number of variables: n=5
Objective function:
f
(
x
)
=
∑
j
=
1
5
e
j
x
j
+
∑
i
=
1
5
∑
j
=
1
5
c
ij
x
i
x
j
+
∑
j
=
1
5
d
j
x
j
3
Constraints:
∑
j
=
1
5
a
ij
x
j
-
b
i
≥
0
,
i
=
1
,
…
,
10
0
≤
x
i
,
i
=
1
,
…
,
5
The coefficients
a
ij
,
b
i
,
c
ij
,
d
j
,
e
j
may be drawn from the following table:
j
1
2
3
4
5
e
j
-
15
-
27
-
36
-
18
-
12
c
1
j
30
-
20
-
10
32
-
10
c
2
j
-
20
39
-
6
-
31
32
c
3
j
-
10
-
6
10
-
6
-
10
c
4
j
32
-
31
-
6
39
-
20
c
5
j
-
10
32
-
10
-
20
30
d
j
4
8
10
6
2
a
1
j
-
16
2
0
1
0
a
2
j
0
-
2
0
.
4
2
a
3
j
-
3
.
5
0
2
0
0
a
4
j
0
-
2
0
-
4
-
1
a
5
j
0
-
9
-
2
1
-
2
.
8
a
6
j
2
0
-
4
0
0
a
7
j
-
1
-
1
-
1
-
1
-
1
a
8
j
-
1
-
2
-
3
-
2
-
1
a
9
j
1
2
3
4
5
a
10
j
1
1
1
1
1
b
j
-
40
-
2
-
.
25
-
4
-
4
b
5
+
j
-
1
-
40
-
60
5
1
initial guess:
x
0
=
(
0
,
0
,
0
,
0
,
1
)
f
(
x
0
)
=
20
Solution:
x
*
=
(
.
3
,
.
33346761
,
.
4
,
.
42831010
,
.
22396487
)
f
(
x
*
)
=
-
32
.
34867897
u
max
*
/
u
min
*
=
11
.
84
/
.
1039
=
113
.
9
λ
max
*
/
λ
min
*
=
68
.
1
/
68
.
1
=
1
u
*
=
(
.
0
,
.
0
,
.
517
E
1
,
.
0
,
.
306
E
1
,
.
118
E
2
,
.
0
,
.
0
,
.
104
E
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
)
Problem 93 (transformer design)
Number of variables: n=6
Objective function:
f
(
x
)
=
.
0204
x
1
x
4
(
x
1
+
x
2
+
x
3
)
+
.
0187
x
2
x
3
(
x
1
+
1
.
57
x
2
+
x
4
)
+
.
0607
x
1
x
4
x
5
2
(
x
1
+
x
2
+
x
3
)
+
.
0437
x
2
x
3
x
6
2
(
x
1
+
1
.
57
x
2
+
x
4
)
Constraints:
.
001
x
1
x
2
x
3
x
4
x
5
x
6
-
2
.
07
≥
0
1
-
.
00062
x
1
x
4
x
5
2
(
x
1
+
x
2
+
x
3
)
-
.
00058
x
2
x
3
x
6
2
(
x
1
+
1
.
57
x
2
+
x
4
)
≥
0
0
≤
x
i
,
i
=
1
,
…
,
6
initial guess:
x
0
=
(
5
.
54
,
4
.
4
,
12
.
02
,
11
.
82
,
.
702
,
.
852
)
f
(
x
0
)
=
137
.
066
Solution:
x
*
=
(
5
.
332666
,
4
.
656744
,
10
.
43299
,
12
.
08230
,
.
7526074
,
.
87865084
)
f
(
x
*
)
=
135
.
075961
u
max
*
/
u
min
*
=
71
.
46
/
62
.
15
=
1
.
15
λ
max
*
/
λ
min
*
=
118
.
9
/
.
21
=
562
.
9
u
*
=
(
.
715
E
2
,
.
622
E
2
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
)
Problem 98
Number of variables: n=6
Objective function:
f
(
x
)
=
4
.
3
x
1
+
31
.
8
x
2
+
63
.
3
x
3
+
15
.
8
x
4
+
68
.
5
x
5
+
4
.
7
x
6
Constraints:
17
.
1
x
1
+
38
.
2
x
2
+
204
.
2
x
3
+
212
.
3
x
4
+
623
.
4
x
5
+
1495
.
5
x
6
-
169
x
1
x
3
-
3580
x
3
x
5
-
3810
x
4
x
5
-
18500
x
4
x
6
-
24300
x
5
x
6
≥
b
1
17
.
9
x
1
+
36
.
8
x
2
+
113
.
9
x
3
+
169
.
7
x
4
+
337
.
8
x
5
+
1385
.
2
x
6
-
139
x
1
x
3
-
2450
x
4
x
5
-
16600
x
4
x
6
-
17200
x
5
x
6
≥
b
2
-
273
x
2
-
70
x
4
-
819
x
5
+
26000
x
4
x
5
≥
b
3
159
.
9
x
1
-
311
x
2
+
587
x
4
+
391
x
5
+
2198
x
6
-
14000
x
1
x
6
≥
b
4
b
1
=
32
.
97
b
2
=
25
.
12
b
3
=
-
124
.
08
b
4
=
-
173
.
02
0
≤
x
1
≤
.
31
,
0
≤
x
3
≤
.
068
,
0
≤
x
5
≤
.
028
0
≤
x
2
≤
.
046
,
0
≤
x
4
≤
.
042
,
0
≤
x
6
≤
.
0134
initial guess:
x
0
=
(
0
,
0
,
0
,
0
,
0
,
0
)
f
(
x
0
)
=
0
Solution:
x
*
=
(
.
2685649
,
0
,
0
,
0
,
.
028
,
.
0134
)
f
(
x
*
)
=
3
.
1358091
u
max
*
/
u
min
*
=
200
/
.
251
=
.
8
E
3
λ
max
*
/
λ
min
*
=
-
u
*
=
(
.
251
E
0
,
.
0
,
.
0
,
.
0
,
0
.
,
.
222
E
2
,
.
486
E
2
,
.
516
E
2
,
0
.
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
638
E
1
,
.
200
E
3
)
Problem 99
Number of variables: n=7
Objective function:
f
(
x
)
=
r
8
(
x
)
2
r
1
(
x
)
=
0
,
r
i
(
x
)
=
a
i
(
t
i
-
t
i
-
1
)
cos
x
i
-
1
+
r
i
-
1
(
x
)
,
i
=
2
,
…
,
8
Constraints:
0
≤
x
i
≤
1
.
58
,
i
=
1
,
…
,
7
q
8
(
x
)
-
1
.
E
5
=
0
s
8
(
x
)
-
1
.
E
3
=
0
q
1
(
x
)
=
s
1
(
x
)
=
0
q
i
(
x
)
=
.
5
(
t
i
-
t
i
-
1
)
2
(
a
i
sin
x
i
-
1
-
b
)
+
(
t
i
-
t
i
-
1
)
s
i
-
1
(
x
)
+
q
i
-
1
(
x
)
s
i
(
x
)
=
(
t
i
-
t
i
-
1
)
(
a
i
sin
x
i
-
1
-
b
)
+
s
i
-
1
(
x
)
,
i
=
2
,
…
,
8
The coefficients
a
i
and
t
i
are
i
a
i
t
i
1
0
0
2
50
25
3
50
50
4
75
100
5
75
150
6
75
200
7
100
290
8
100
380
b
=
32
initial guess:
x
0
=
(
.
5
,
.
5
,
.
5
,
.
5
,
.
5
,
.
5
,
.
5
)
f
(
x
0
)
=
-
.
7763605
E
9
Solution:
x
*
=
(
.
5424603
,
.
5290159
,
.
5084506
,
.
4802693
,
.
4512352
,
.
4091878
,
.
3527847
)
f
(
x
*
)
=
-
.
831079892
E
9
u
max
*
/
u
min
*
=
.
1934
E
5
/
.
4194
E
2
=
.
46
E
3
λ
max
*
/
λ
min
*
=
.
50
E
9
/
.
84
E
8
=
5
.
95
u
*
=
(
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
419
E
2
,
.
193
E
5
)
hs99scal is obtained from this one by the transformation (dual scaling)
f
→
f
/
10
9
,
h
1
→
h
1
/
10
5
,
h
2
→
h
2
/
10
3
.
Problem 112 (chemical equilibrium)
Number of variables: n=10
Objective function:
f
(
x
)
=
∑
j
=
1
10
x
j
(
c
j
+
ln
x
j
x
1
+
…
+
x
10
)
j
c
j
j
c
j
1
-
6
.
089
6
-
14
.
986
2
-
17
.
164
7
-
24
.
100
3
-
34
.
054
8
-
10
.
708
4
-
5
.
914
9
-
26
.
662
5
-
24
.
721
10
-
22
.
179
Constraints:
x
1
+
2
x
2
+
2
x
3
+
x
6
+
x
10
-
2
=
0
x
4
+
2
x
5
+
x
6
+
x
7
-
1
=
0
x
3
+
x
7
+
x
8
+
2
x
9
+
x
10
-
1
=
0
1
.
E
-
6
≤
x
i
,
i
=
1
,
…
,
10
initial guess:
x
0
=
(
.
1
,
…
,
.
1
)
f
(
x
0
)
=
-
20
.
961
Solution:
x
*
=
(
.
01773548
,
.
08200180
,
.
8825646
,
.
723325
E
-
3
,
.
4907851
,
.
4335469
E
-
3
,
.
01727298
,
.
007765639
,
.
01984929
,
.
05269826
)
f
(
x
*
)
=
-
47
.
707579
u
max
*
/
u
min
*
=
15
.
02
/
.
262
E
-
3
=
.
57
E
5
λ
max
*
/
λ
min
*
=
191
/
8
.
98
=
21
.
3
u
*
=
(
.
0
,
.
0
,
.
0
,
.
262
E
-
3
,
.
0
,
.
130
E
-
2
,
.
0
,
.
0
,
.
0
,
.
0
,
-
.
958
E
1
,
-
.
126
E
2
,
-
1
.
150
E
2
)
Problem 114 (alkylation process)
Number of variables: n=10
Objective function:
f
(
x
)
=
5
.
04
x
1
+
.
035
x
2
+
10
x
3
+
3
.
36
x
5
-
.
063
x
4
x
7
Constraints:
g
1
(
x
)
=
35
.
82
-
.
222
x
10
-
bx
9
≥
0
g
2
(
x
)
=
-
133
+
3
x
7
-
ax
10
≥
0
g
3
(
x
)
=
-
g
1
(
x
)
+
x
9
(
1
/
b
-
b
)
≥
0
g
4
(
x
)
=
-
g
2
(
x
)
+
(
1
/
a
-
a
)
x
10
≥
0
g
5
(
x
)
=
1
.
12
x
1
+
.
13167
x
1
x
8
-
.
00667
x
1
x
8
2
-
ax
4
≥
0
g
6
(
x
)
=
57
.
425
+
1
.
098
x
8
-
.
038
x
8
2
+
.
325
x
6
-
ax
7
≥
0
g
7
(
x
)
=
-
g
5
(
x
)
+
(
1
/
a
-
a
)
x
4
≥
0
g
8
(
x
)
=
-
g
6
(
x
)
+
(
1
/
a
-
a
)
x
7
≥
0
h
1
(
x
)
=
1
.
22
x
4
-
x
1
-
x
5
=
0
h
2
(
x
)
=
98000
x
3
/
(
x
4
x
9
+
1000
x
3
)
-
x
6
=
0
h
3
(
x
)
=
(
x
2
+
x
5
)
/
x
1
-
x
8
=
0
a
=
0
.
99
b
=
.
9
.
00001
≤
x
1
≤
2000
.
00001
≤
x
2
≤
16000
.
00001
≤
x
3
≤
120
.
00001
≤
x
4
≤
5000
.
00001
≤
x
5
≤
2000
85
≤
x
6
≤
93
90
≤
x
7
≤
95
3
≤
x
8
≤
12
1
.
2
≤
x
9
≤
4
145
≤
x
10
≤
162
initial guess:
x
0
=
(
1745
,
12000
,
110
,
3048
,
1974
,
89
.
2
,
92
.
8
,
8
,
3
.
6
,
145
)
f
(
x
0
)
=
-
872
.
3872
Solution:
x
*
=
(
1698
.
096
,
15818
.
73
,
54
.
10228
,
3031
.
226
,
2000
,
90
.
11537
,
95
,
10
.
49336
,
1
.
561636
,
153
.
53535
)
f
(
x
*
)
=
-
1768
.
80696
u
max
*
/
u
min
*
=
311
.
8
/
.
6778
=
460
λ
max
*
/
λ
min
*
=
.
14
E
-
4
/
.
14
E
-
4
=
1
u
*
=
(
.
0
,
.
699
E
2
,
.
312
E
3
,
.
0
,
.
678
E
0
,
.
230
E
3
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
884
E
0
,
.
0
,
.
173
E
3
,
.
0
,
.
0
,
.
0
,
-
.
421
E
1
,
.
746
E
2
,
.
594
E
2
)
Problem 118 (a QP)
Number of variables: n=15
Objective function:
f
(
x
)
=
∑
k
=
0
4
(
2
.
3
x
3
k
+
1
+
.
0001
x
3
k
+
1
2
+
1
.
7
x
3
k
+
2
+
.
0001
x
3
k
+
2
2
+
2
.
2
x
3
k
+
3
+
.
00015
x
3
k
+
3
2
)
Constraints:
0
≤
x
3
j
+
1
-
x
3
j
-
2
+
7
≤
13
0
≤
x
3
j
+
2
-
x
3
j
-
1
+
7
≤
14
0
≤
x
3
j
+
3
-
x
3
j
+
7
≤
13
j
=
1
,
…
,
4
x
1
+
x
2
+
x
3
-
60
≥
0
x
4
+
x
5
+
x
6
-
50
≥
0
x
7
+
x
8
+
x
9
-
70
≥
0
x
10
+
x
11
+
x
12
-
85
≥
0
x
13
+
x
14
+
x
15
-
100
≥
0
8
≤
x
1
≤
21
43
≤
x
2
≤
57
3
≤
x
3
≤
16
0
≤
x
3
k
+
1
≤
90
0
≤
x
3
k
+
2
≤
120
0
≤
x
3
k
+
3
≤
60
k
=
1
,
…
,
4
initial guess:
x
0
=
(
20
,
55
,
15
,
20
,
60
,
20
,
20
,
60
,
20
,
20
,
60
,
20
,
20
,
60
,
20
)
f
(
x
0
)
=
942
.
716
Solution:
x
*
=
(
8
,
49
,
3
,
1
,
56
,
0
,
1
,
63
,
6
,
3
,
70
,
12
,
5
,
77
,
18
)
f
(
x
*
)
=
664
.
8204500
u
max
*
/
u
min
*
=
2
.
941
/
.
04860
=
60
.
5
λ
max
*
/
λ
min
*
=
-
u
*
=
(
.
230
E
1
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
486
E
-
1
,
.
176
E
1
,
.
0117
E
1
,
.
586
E
0
,
.
0
,
.
291
E
0
,
.
193
E
0
,
.
956
E
-
1
,
.
166
E
1
,
.
0
,
.
230
E
1
,
.
230
E
1
,
.
230
E
1
,
.
294
E
1
,
.
0
,
.
540
E
0
,
.
0
,
.
0
,
.
191
E
1
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
,
.
0
)
File translated from T
E
X by
T
T
M Unregistered
, version 4.03.
On 16 Jun 2016, 16:46.