Nonlinear programming test cases

This is a small collection of testcases from the book
W. Hock, K. Schittkowski
Test Examples for Nonlinear Programming Codes.
Lecture Notes in Econ and Math. Syst. 187
In the following list there are given the data:
  1. The functions defining the problem (objective function and constraints)
  2. standard initial value for x. This latter can be changed on the input page. For some of the testcases I have changed the initial value compared to the original source in order to obtain a feasible initial x.
  3. The optimal solution. The precision cannot be guaranteed for all given cases with the number of digits given.
  4. The quotient of the largest to the smallest nonzero multiplier umax * / umin * . The problem becomes harder if this quotient is large.
  5. λmax * / λmin * , the condition number of the projected Hessian, this is the condition number of the objective function seen in the tangent manifold of the feasible set at the solution. In contrast to this one the matrix
    x 2 L

    is not necessarily positive (semi)definite. With this quotient growing the problem becomes harder. If this value is omitted (it appears a "-") then the solution is at a vertex, which in turn makes the problem much easier. Locally it reduces to a system of n nonlinear equations in n unknowns for finding this vertex.
Problem 23
Number of variables: n=2
Objective function:
f(x)= x1 2 + x2 2

Constraints:
x1 + x2 -1 0 x1 2 + x2 2 -1 0 9 x1 2 + x2 2 -9 0 x1 2 - x2 0 x2 2 - x1 0 -50 xi 50,      i=1,2

initial guess:
x0 = (3,1) f( x0 ) = 10

Solution:
x* = (1,1) f( x* ) = 2 umax * / umin * = 2/2=1 λmax * / λmin * = - u* = (0,0,0,2,2,0,0,0,0)

Problem 33
Number of variables: n=3
Objective function:
f(x)=( x1 -1)( x1 -2)( x1 -3)+ x3

Constraints:
x3 2 - x2 2 - x1 2 0 x1 2 + x2 2 + x3 2 -4 0 0 x1 0 x2 0 x3 5

initial guess:
x0 = (0,0,3) f( x0 ) = -3

Solution:
x* = (0,2,2) f( x* ) = 2-6 umax * / umin * = 11/.17678=62.23 λmax * / λmin * = - u* = (0.177,0.177,11,0,0,0)

Problem 43 (Rosen-Suzuki)
Number of variables: n=4
Objective function:
f(x)= x1 2 + x2 2 +2 x3 2 + x4 2 -5 x1 -5 x2 -21 x3 +7 x4

Constraints:
8- x1 2 - x2 2 - x3 2 - x4 2 - x1 + x2 - x3 + x4 0 10- x1 2 -2 x2 2 - x3 2 -2 x4 2 + x1 + x4 0 5-2 x1 2 - x2 2 - x3 2 -2 x1 + x2 + x4 0

initial guess:
x0 = (0,0,0,0) f( x0 ) = 0

Solution:
x* = (0,1,2,-1) f( x* ) = -44 umax * / umin * = 2/1=2 λmax * / λmin * = 9/8.07=1.12 u* = (1,0,2)

Problem 54
Number of variables: n=6
Objective function:
f(x) = -exp(-h(x)/2) h(x) = (( x1 -1. E 4 )2 /6.4 E 7+( x1 -1. E 4)( x2 -1)/2. E 4+6.25( x2 -1 )2 )/.96 +( x3 -2. E 6 )2 /4.9 E 13 +( x4 -10 )2 /2.5 E 3 +( x5 -1. E - 3 )2 /2.5 E - 3 +( x6 -1. E 8 )2 /2.5 E 17

Constraints:
x1 +4. E 3 x2 -1.76 E 4=0 0 x1 2. E 4   -10 x2 10   0 x3 1. E 7 0 x4 20-1 x5 10 x6 2. E 8

initial guess:
x0 = (6 E 3,1.5,4 E 6,2,3 E - 3,5 E 7) f( x0 ) = -.7651

Solution:
x* = (91600/7,79/70,2 E 6,10,1 E - 3,1 E 8) f( x* ) = -exp(-27/280) umax * / umin * = .4865 E - 4/.4865 E - 4=1 λmax * / λmin * = 362.9/.36 E - 17=.10 E 21 u* = (0,0,0,0,0,0,0,0,0,0,0,0,.486 E - 4)

hs54scal is obtained from hs54 by the linear transformation
x1 ' = ( x1 -1000)/8000 x2 ' = ( x2 -1)2.5 x3 ' = ( x3 -2000000)/7000000 x4 ' = ( x4 -10)/50 x5 ' = ( x5 -0.001)/0.05 x6 ' = ( x6 -100000000)/500000000

This problem is quite easy to solve. This shows the importance of proper problem scaling in practice.
Problem 73 (cattle-feed)
Number of variables: n=4
Objective function:
f(x)=24.55 x1 +26.75 x2 +39 x3 +40.50 x4

Constraints:
2.3 x1 +5.6 x2 +11.1 x3 +1.3 x4 -5 0 12 x1 +11.9 x2 +41.8 x3 +52.1 x4 -21 -1.645(.28 x1 2 +.19 x2 2 +20.5 x3 2 +.62 x4 2 )1/2 0 x1 + x2 + x3 + x4 -1 = 0 0 xi ,      i=1,,4

initial guess:
x0 = (1,1,1,1) f( x0 ) = 130.8

Solution:
x* = (.6355216,-.12 E - 11,.3127019,.05177655) f( x* ) = 29.894378 umax * / umin * = 18.37/.2433=75.5 λmax * / λmin * = - u* = (.58 E 0,.411 E 0,0,.243 E 0,0,0,.184 E 2)

Problem 84
Number of variables: n=5
Objective function:
f(x)=- a1 - a2 x1 - a3 x1 x2 - a4 x1 x3 - a5 x1 x4 - a6 x1 x5

Constraints:
294000 a7 x1 + a8 x1 x2 + a9 x1 x3 + a10 x1 x4 + a11 x1 x5 0 294000 a12 x1 + a13 x1 x2 + a14 x1 x3 + a15 x1 x4 + a16 x1 x5 0 277200 a17 x1 + a18 x1 x2 + a19 x1 x3 + a20 x1 x4 + a21 x1 x5 0 0 x1 1000 1.2 x2 2.4 20 x3 60 9 x4 9.3 6.5 x5 7

The coefficients ai may be drawn from the following table:
i ai i ai 1-243451115711.36 2-8720288.84912-155011.1084 3150512.5253134360.53352 4-156.69503251412.9492344 5476470.32221510236.884 6729482.82711613176.786 7-145421.40217-326669.5104 82931.1506187390.68412 9-40.42793219-27.8986976 105106.1922016643.076 2130988.146

initial guess:
x0 = (2.52,2,37.5,9.25,6.8) f( x0 ) = -2351243.5

Solution:
x* = (4.53743097,2.4,60,9.3,7) f( x* ) = -5280335.133 umax * / umin * = .7168 E 6/.1914 E 2=.37 E 5 λmax * / λmin * = - u* = (0,0,0,0,0,.191 E 2,0,0,0,0,0,0, .412 E 5,.171 E 4,.717 E 6,.619 E 6)

hs84scal is obtained from this by the transformation
x1 ' = x1 /1000,       x2 ' = x2 ,       x3 ' = x3 /10,       x4 ' = x4 ,       x5 ' = x5

and division of the first three inequalities by 1000. This means primal and dual scaling. Now the problem is much easier.
Problem 86 (Colville No. 1)
Number of variables: n=5
Objective function:
f(x)= j=1 5 ej xj + i=1 5 j=1 5 cij xi xj + j=1 5 dj xj 3

Constraints:
j=1 5 aij xj - bi 0,      i=1,,10 0 xi ,      i=1,,5

The coefficients aij , bi , cij , dj , ej may be drawn from the following table:
j12345 ej -15-27-36-18-12 c1j 30-20-1032-10 c2j -2039-6-3132 c3j -10-610-6-10 c4j 32-31-639-20 c5j -1032-10-2030 dj 481062 a1j -162010 a2j 0-20.42 a3j -3.50200 a4j 0-20-4-1 a5j 0-9-21-2.8 a6j 20-400 a7j -1-1-1-1-1 a8j -1-2-3-2-1 a9j 12345 a10j 11111 bj -40-2-.25-4-4 b5+j -1-40-6051

initial guess:
x0 = (0,0,0,0,1) f( x0 ) = 20

Solution:
x* =(.3,.33346761,.4,.42831010,.22396487) f( x* )=-32.34867897 umax * / umin * =11.84/.1039=113.9 λmax * / λmin * =68.1/68.1=1 u* =( .0,.0,.517 E 1,.0, .306 E 1,.118 E 2,.0,.0, .104 E 0,.0,.0,.0, .0,.0,.0)

Problem 93 (transformer design)
Number of variables: n=6
Objective function:
f(x)=.0204 x1 x4 ( x1 + x2 + x3 )+.0187 x2 x3 ( x1 +1.57 x2 + x4 ) +.0607 x1 x4 x5 2 ( x1 + x2 + x3 )+.0437 x2 x3 x6 2 ( x1 +1.57 x2 + x4 )

Constraints:
.001 x1 x2 x3 x4 x5 x6 -2.07 0 1-.00062 x1 x4 x5 2 ( x1 + x2 + x3 )-.00058 x2 x3 x6 2 ( x1 +1.57 x2 + x4 ) 0 0 xi ,      i=1,,6

initial guess:
x0 = (5.54,4.4,12.02,11.82,.702,.852) f( x0 ) = 137.066

Solution:
x* = (5.332666,4.656744,10.43299,12.08230,.7526074,.87865084) f( x* ) = 135.075961 umax * / umin * = 71.46/62.15=1.15 λmax * / λmin * = 118.9/.21=562.9 u* = (.715 E 2,.622 E 2,.0,.0,.0,.0,.0,.0)

Problem 98
Number of variables: n=6
Objective function:
f(x)=4.3 x1 +31.8 x2 +63.3 x3 +15.8 x4 +68.5 x5 +4.7 x6

Constraints:
17.1 x1 +38.2 x2 +204.2 x3 +212.3 x4 +623.4 x5 +1495.5 x6 -169 x1 x3 -3580 x3 x5 -3810 x4 x5 -18500 x4 x6 -24300 x5 x6 b1 17.9 x1 +36.8 x2 +113.9 x3 +169.7 x4 +337.8 x5 +1385.2 x6 -139 x1 x3 -2450 x4 x5 -16600 x4 x6 -17200 x5 x6 b2 -273 x2 -70 x4 -819 x5 +26000 x4 x5 b3 159.9 x1 -311 x2 +587 x4 +391 x5 +2198 x6 -14000 x1 x6 b4


b1 =32.97 b2 =25.12 b3 =-124.08 b4 =-173.02


0 x1 .31   ,   0 x3 .068   ,   0 x5 .028 0 x2 .046   ,   0 x4 .042   ,   0 x6 .0134

initial guess:
x0 = (0,0,0,0,0,0) f( x0 ) = 0

Solution:
x* = (.2685649,0,0,0,.028,.0134) f( x* ) = 3.1358091 umax * / umin * = 200/.251=.8 E 3 λmax * / λmin * = -


u* =( .251 E 0,.0,.0,.0, 0.,.222 E 2,.486 E 2,.516 E 2, 0.,.0,.0,.0, .0,.0,.638 E 1,.200 E 3)

Problem 99
Number of variables: n=7
Objective function:
f(x)= r8 (x )2


r1 (x)=0,    ri (x)= ai ( ti - ti-1 )cos xi-1 + ri-1 (x),   i=2,,8

Constraints:
0 xi 1.58,      i=1,,7 q8 (x)-1. E 5=0 s8 (x)-1. E 3=0 q1 (x)= s1 (x)=0 qi (x)=.5( ti - ti-1 )2 ( ai sin xi-1 -b)+( ti - ti-1 ) si-1 (x)+ qi-1 (x) si (x)=( ti - ti-1 )( ai sin xi-1 -b)+ si-1 (x),   i=2,,8

The coefficients ai and ti are
i ai ti 100 25025 35050 475100 575150 675200 7100290 8100380 b=32

initial guess:
x0 = (.5,.5,.5,.5,.5,.5,.5) f( x0 ) = -.7763605 E 9

Solution:
x* = (.5424603,.5290159,.5084506,.4802693,.4512352,.4091878,.3527847) f( x* ) = -.831079892 E 9 umax * / umin * = .1934 E 5/.4194 E 2=.46 E 3 λmax * / λmin * = .50 E 9/.84 E 8=5.95


u * =( .0,.0,.0,.0, .0,.0,.0,.0, .0,.0,.0,.0, .0,.0,.419 E 2,.193 E 5)

hs99scal is obtained from this one by the transformation (dual scaling)
ff/ 109 ,    h1 h1 / 105 ,    h2 h2 / 103 .

Problem 112 (chemical equilibrium)
Number of variables: n=10
Objective function:
f(x)= j=1 10 xj ( cj +ln xj x1 ++ x10 )


j cj j cj 1-6.0896-14.986 2-17.1647-24.100 3-34.0548-10.708 4-5.9149-26.662 5-24.721   10-22.179

Constraints:
x1 +2 x2 +2 x3 + x6 + x10 -2 = 0 x4 +2 x5 + x6 + x7 -1 = 0 x3 + x7 + x8 +2 x9 + x10 -1 = 0 1. E - 6 xi , i=1,,10

initial guess:
x0 = (.1,,.1) f( x0 ) = -20.961

Solution:
x* = (.01773548,.08200180,.8825646,.723325 E - 3,    .4907851,.4335469 E - 3,.01727298,    .007765639,.01984929,.05269826) f( x* ) = -47.707579 umax * / umin * = 15.02/.262 E - 3=.57 E 5 λmax * / λmin * = 191/8.98=21.3


u* =( .0,.0,.0,.262 E - 3, .0,.130 E - 2,.0,.0, .0,.0,-.958 E 1,-.126 E 2, -1.150 E 2)

Problem 114 (alkylation process)
Number of variables: n=10
Objective function:
f(x)=5.04 x1 +.035 x2 +10 x3 +3.36 x5 -.063 x4 x7

Constraints:
g1 (x) = 35.82-.222 x10 - bx9 0 g2 (x) = -133+3 x7 - ax10 0 g3 (x) = - g1 (x)+ x9 (1/b-b)0 g4 (x) = - g2 (x)+(1/a-a) x10 0 g5 (x) = 1.12 x1 +.13167 x1 x8 -.00667 x1 x8 2 - ax4 0 g6 (x) = 57.425+1.098 x8 -.038 x8 2 +.325 x6 - ax7 0 g7 (x) = - g5 (x)+(1/a-a) x4 0 g8 (x) = - g6 (x)+(1/a-a) x7 0 h1 (x) = 1.22 x4 - x1 - x5 =0 h2 (x) = 98000 x3 /( x4 x9 +1000 x3 )- x6 =0 h3 (x) = ( x2 + x5 )/ x1 - x8 =0 a = 0.99 b = .9


.00001 x1 2000 .00001 x2 16000 .00001 x3 120 .00001 x4 5000 .00001 x5 2000 85 x6 93 90 x7 95 3 x8 12 1.2 x9 4 145 x10 162

initial guess:
x0 = (1745,12000,110,3048,1974,89.2,92.8,8,3.6,145) f( x0 ) = -872.3872

Solution:
x* = (1698.096,15818.73,54.10228,3031.226,2000, 90.11537,95,10.49336,1.561636,153.53535) f( x* ) = -1768.80696 umax * / umin * = 311.8/.6778=460 λmax * / λmin * = .14 E - 4/.14 E - 4=1


u* =( .0,.699 E 2,.312 E 3,.0, .678 E 0,.230 E 3,.0,.0, .0,.0,.0,.0, .0,.0,.0,.0, .0,.0,.0,.0, .0,.0,.884 E 0,.0, .173 E 3,.0,.0,.0, -.421 E 1,.746 E 2,.594 E 2)

Problem 118 (a QP)
Number of variables: n=15
Objective function:
f(x)= k=0 4(2.3 x3k+1 +.0001 x3k+1 2 +1.7 x3k+2 +.0001 x3k+2 2 +2.2 x3k+3 +.00015 x3k+3 2 )

Constraints:
0 x3j+1 - x3j-2 +713   0 x3j+2 - x3j-1 +714 0 x3j+3 - x3j +713   j=1,,4 x1 + x2 + x3 -600 x4 + x5 + x6 -500 x7 + x8 + x9 -700 x10 + x11 + x12 -850 x13 + x14 + x15 -1000 8 x1 2143 x2 573 x3 16 0 x3k+1 90      0 x3k+2 120      0 x3k+3 60 k=1,,4

initial guess:
x0 = (20,55,15,20,60,20,20,60,20,20,60,20,20,60,20) f( x0 ) = 942.716

Solution:
x* = (8,49,3,1,56,0,1,63,6,3,70,12,5,77,18) f( x* ) = 664.8204500 umax * / umin * = 2.941/.04860=60.5 λmax * / λmin * = -


u* =( .230 E 1,.0,.0,.0, .0,.0,.0,.0, .0,.0,.0,.0, .0,.0,.0,.0, .486 E - 1,.176 E 1,.0117 E 1,.586 E 0, .0,.291 E 0,.193 E 0,.956 E - 1, .166 E 1,.0,.230 E 1,.230 E 1, .230 E 1,.294 E 1,.0,.540 E 0, .0,.0,.191 E 1,.0, .0,.0,.0,.0, .0,.0,.0,.0, .0,.0,.0,.0, .0,.0,.0,.0, .0,.0,.0)




File translated from TEX by TTM Unregistered, version 4.03.
On 16 Jun 2016, 16:46.