LP problem - Simplex method -- sparse matrix

Please specify a problem identifier in this field (no blanks included)

Please specify the dimension n (n=dim(x)=dim(c)):
n= Important : 1 <= n <= 99 !

Please specify the number p of rows of the matrix A:
p= Important : 1 <= p <= n-1 !

Please type the coefficients of the objective function c(1),...,c(n) and of the right hand side of the equations b(1),...,b(p) in these textareas:
Important: input form is here one pair index, value in each input line ! For example
1, 6
2, 0.4
5, 0.3
  
for c(1)=6, c(2)=0.4 und c(5)=0.3. Entries not specified here are zero.
objective function coefficients c: equations right hand side b:

Please specify the nonzero matrix entries here:
Important : input format is index1, index2, value rowwise! For example
1, 1, 6
2, 1, 0.4
5, 1, 0.3
5, 6, 1.3
  
for a(1,1)=6, a(2,1)=0.4, a(5,1)=0.3 und a(5,6)=1.3. Entries not specified here are zero.

Should phase 1 be included? (requires n+p <= 99 !)
with phase 1
start with feasible vertex type basis of this vertex here :basis(i),i=1,..,p (integer)
feasibility will be checked!.

Rule for selecting the incoming variable: most negative reduced cost or the least index rule of Bland?
most negative multiplier (max dual violation)
least index rule

For safety: the maximum number of exchange steps maxstep:
maxstep= Important: n <= maxstep <= 10000 !

Do you want to see the intermediate tableaus?
Display the condensed tableau
no output of the tableau

Click on "evaluate", in order to submit your input.

Back to the theory page

 Back to the top!

23.06.2010